

IACT Tutorial

Back of the envelope

Fermi Summer School 2012

Nepomuk Otte

School of Physics & Center for Relativistic Astrophysics Georgia Institute of Technology

Can my favorite source be detected with VERITAS?

A spectrum extrapolated from Fermi data can the tail be measured with VERITAS?

Taking M82 as an example

1. Is the source visible?

Declination -> is the source visible at all?

Source culminates at min Zenith angle: abs(Obs.Latitude-Source declination)

Observable if zenith angle at culmination is < 60 degrees

Right ascension -> what time of year does the source culminates at midnight

0 hours RA October

+2 hours in RA each month

M82 R.A.: 09 55 52.7 (hh mm ss)

Dec.: +69 40 46 (dd mm ss)

VERITAS latitude 32 degrees North

Culmination at 38 degree Zenith angle

Best observability (culmination at midnight local)

(10hr/2hr + October)%12 = March

1. Is the source visible to VERITAS

http://tevcat.uchicago.edu/

Plotted M82 RA,Dec = (148.97,69.6794) for year 2012 at lat,lon = 31.68,-110.86

Source culminates at a Zenith angle of 70-32=38 degrees Visible from December to May

Plotted M82 RA, Dec = (148.97, 69.6794) for year 2012 at lat, lon = 31.68, -110.86

Source culminates at a Zenith angle of 70-32=38 degrees Visible from December to May

A source is flaring can we observe right now?

Plotted 1ES 1959 650 RA, Dec = (299.999,65.1486) for date (dd-mm-yy) 2-6-2012 (MJD= 56080) at lat, lon = 31.68,-110.86

Nominal Times (rough guesses) Start: 10:35, Stop: 10:53, dT ~ 00:17

What is the energy threshold?

Peak of the differential trigger rate distribution

= Source spectrum multiplied with effective area

$$F(E) \times A(E) = TriggerRate(E)$$

Effective area is not determined by the size of the telescope but the size of the Cherenkov photon light pool on ground

Effective Area

Effective area = area over which gamma-rays are being simulated

X number of triggered events/total number of simulated events

Gamma-ray showers simulated with impact points up to 750 m away from the telescopes

Radial Event distribution

No photon beyond 600 m triggers telescopes

Cherenkov photon density on ground

Threshold Energy

Table 1
Results of Maximum Likelihood Analyses of M82 and NGC 253

Galaxy	R.A. ^a (deg)	Decl. ^a (deg)	r ₉₅ ^a (deg)	$F(>100 \text{ MeV})^{\text{b}}$ (10 ⁻⁸ ph cm ⁻² s ⁻¹)	Photon Index ^b	Significance ^c
M82	149.06	69.64	0.11	$1.6 \pm 0.5_{\text{stat}} \pm 0.3_{\text{sys}}$	$2.2 \pm 0.2_{\text{stat}} \pm 0.05_{\text{sys}}$	6.8
NGC 253	11.79	-25.21	0.14	$0.6 \pm 0.4_{\text{stat}} \pm 0.4_{\text{sys}}$	$1.95 \pm 0.4_{\text{stat}} \pm 0.05_{\text{sys}}$	4.8

$$F(E) \cdot A(E) = TriggerRate(E)$$

 $NE^{-\alpha} \cdot A(E) = NR'(E)$

Strong dependence on photon index

Rate distribution (@ Trigger)

For a photon index of -2.2

Effective Areas

Differential Sensitivity

Diff. Sens.

Flux that gives 5 sigma excess in energy bin after 50 hours for an observation at 20 deg

For spectral reconstruction need 3 sigma excess in each bin

Table 1
Results of Maximum Likelihood Analyses of M82 and NGC 253

Galaxy	R.A. ^a (deg)	Decl. ^a (deg)	r ₉₅ ^a (deg)	$F(>100 \text{ MeV})^{\text{b}}$ (10 ⁻⁸ ph cm ⁻² s ⁻¹)	Photon Index ^b	Significance ^c
M82	149.06	69.64	0.11	$1.6 \pm 0.5_{\text{stat}} \pm 0.3_{\text{sys}}$	$2.2 \pm 0.2_{\text{stat}} \pm 0.05_{\text{sys}}$	6.8
NGC 253	11.79	-25.21	0.14	$0.6 \pm 0.4_{\text{stat}} \pm 0.4_{\text{sys}}$	$1.95 \pm 0.4_{\text{stat}} \pm 0.05_{\text{sys}}$	4.8

Need flux in E² dN/dE and in erg/cm²/s

For spectral reconstruction need 3 sigma excess in each bin

Table 1
Results of Maximum Likelihood Analyses of M82 and NGC 253

Galaxy	R.A. ^a (deg)	Decl. ^a (deg)	r ₉₅ ^a (deg)	$F(>100 \text{ MeV})^{\text{b}}$ (10 ⁻⁸ ph cm ⁻² s ⁻¹)	Photon Index ^b	Significance ^c
M82	149.06	69.64	0.11	$1.6 \pm 0.5_{\text{stat}} \pm 0.3_{\text{sys}}$	$2.2 \pm 0.2_{\text{stat}} \pm 0.05_{\text{sys}}$	6.8
NGC 253	11.79	-25.21	0.14	$0.6 \pm 0.4_{\text{stat}} \pm 0.4_{\text{sys}}$	$1.95 \pm 0.4_{\text{stat}} \pm 0.05_{\text{sys}}$	4.8

$$E^{2}\frac{dN}{dE} = 5.15 \cdot 10^{-12}E^{-0.2}erg/cm^{2}/s$$

@ 1 TeV & 20deg zenith: sensitivity $\sim 6.5 \cdot 10^{-13}$

Going from 20 deg to 40 deg -> shift in energy scale 1.7

1 TeV => 1.7 TeV
6.5·10⁻¹³ erg/cm²/s=>
$$(1.7/1.0)^2 6.5 \cdot 10^{-13} = 1.9 \cdot 10^{-12}$$
 erg/cm²/s

$$E^2 \frac{dN}{dE} = 5.15 \cdot 10^{-12} (1700)^{-0.2} erg/cm^2/s$$

 $= 1.16 \cdot 10^{-12} \text{ erg /cm}^2/\text{s}$

significance =
$$\frac{F_{\text{expolated}}}{F_{5\sigma \text{ in } 50 \text{ hrs}}} \cdot \sqrt{\frac{t}{50 \, hrs}} \cdot 5\sigma$$

Observation Time to obtain 3sigma @ 1700 GeV:

~ 50 hours

Note that this is only a rough estimate, which gives you a ball park number

